The MegaAttitude Project addresses how humans draw complex inferences from the thousands of English predicates that combine with subordinate clauses – “think”, “know”, “say”, “tell”, “remember”, “forget”, etc. – when the structural characteristics of the clauses they combine with vary. For example, the sentence “John forgot that he bought milk” is similar to the sentence “John forgot to buy milk”; but from the first sentence, a listener infers that John bought milk, while from the second, a listener infers that he didn’t. This inference pattern is only one among many such patterns in English; yet, in spite of this variety, there appears to be substantial regularities across predicates and subordinate clause structures that prior work has only scratched the surface of. Investigating the systematicities in how humans compute these inference patterns sheds light on how the human cognitive system constructs complex meanings from simpler parts and supports the development of intelligent computational systems for comprehending and reasoning about natural language in human-like ways.

The current project approaches this investigation in two parts. First, it develops and deploys multiple scalable, crowd-sourced annotation protocols, based on experimental methodologies from psycholinguistics, in order to collect data about a wide variety of inference patterns triggered by all of the thousands of English predicates that combine with subordinate clauses. Second, it leverages recent advances in multi-task machine learning to build a unified computational model of the relationship between such predicates, the structure of their subordinate clauses, and the inferences that they trigger, which is trained on these data. This model not only helps to reveal systematicities in how humans compute the inference patterns of interest; it can also be straightforwardly incorporated into applied technologies for natural language understanding.

MegaAttitude is supported by a National Science Foundation collaborative grant (BCS-1748969/BCS-1749025).

WebsiteLogo

Papers